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The purpose  of  this paper  is to obtain general expressions for the second- 
order  terms of  the t ranspor t  coefficients of  a dense gas. These expressions 
are obtained using the convergent  kinetic theory proposed  recently by 
Braun and Flores. 
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1. I N T R O D U C T I O N  

The problem of evaluating transport coefficients for a dense gas from the 
theory proposed by Bogolyubov ~1~ has come to a stalemate. This is due to the 
fact that when obtaining the second order in the density of the transport 
coefficients of a system of hard spheres it was found that they diverged. (2~ 
Moreover, it was also found that higher-order terms in the transport co- 
efficients also diverged. This means that integrals over configuration space 
diverge. 

Several attempts to remedy this situation have been made. We mention, 
for example, the resummation technique, (3~ which gives rise to a nonanalytical 
density dependence of the transport coefficients. In fact, this technique gives 
rise to transport coefficients which contain logarithms in the density. 

Kestin and collaborators (~ have performed a series of very accurate 
experiments in which they measure the transport coefficients in a very wide 
range of pressures. They found that, within their accuracy, the experimental 
data do not support the conclusion of a logarithmic dependence in the 
transport coefficients, as predicted by the theory mentioned above. Further, 
the experimental results establish that the best fit for the transport coefficients 
is a power series in the density. This means that there is experimental support 
for a convergent virial expansion of the transport coefficients. 

On the other hand, an analysis of the hypotheses made by Bogolyubov 
was done by Braun and Flores. (s~ It was found that one of the assumptions, 
namely the boundary conditions used in solving the BBGKY hierarchy, does 
not reflect the physical properties of the system, and that this is the reason 
for the appearance of the divergences. 

The difficulty with the boundary conditions proposed by Bogolyubov is 
that they do not take into account the medium when expressing properties 
of clusters of few particles. This difficulty was overcome by proposing a new 
set of boundary conditions which do take into account the medium. C5~ As a 
consequence, when calculating transport coefficients this new theory gives a 
convergent virial expansion of the transport coefficients. To zeroth order in 
the density the Bo'tzmann results were recovered, (6~ and to first order in the 
density results were obtained which are different from the results obtained 
by Choh and Uhlenbeck. (7~ 

It is the purpose of this paper to obtain general expressions for the 
second-order terms of the transport coefficients using the new theory men- 
tioned above. 

In Section 2 we write down several basic expressions which will be used 
in the rest of the paper. In Section 3 we solve the BBGKY hierarchy to obtain 
the two-body distribution function to second order in the density, using the 
new boundary conditions. In Section 4 we obtain the general expressions for 
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the second order in the density terms of the transport coefficients. Finally, in 
Section 5 we discuss our results and show that they converge. 

2. B A S I C  E X P R E S S I O N S  

The kinetic equation is obtained from the first equation of the BBGKY 
hierarchy, using the functional assumption 

aF~ p aF~ 
a--i + . . . .  ,~(xIFO O) m aq 

where 
+ 

CO(xJF1) = n j dx~ 01~F2(x, x~[F~) (2) 

Here n is the particle density, x - (p, q), and F2 is the two-body distribu- 
tion function in phase space as a time-independent functional of F1. 

Linearizing this kinetic equation, one finds (~) 

p rl ( 
at + . . . .  m aq ~(x[F~(q)) + j dx' O'(x, x'[Fx(q))(q' - q). ~-~q,]q,=q (3) 

where O(xtFz(q)) is evaluated at the local distribution function F~(q) and 
*'(x, x'lFz(q)) denotes the functional derivative of �9 with respect to/:1 taken 
at the point x' and evaluated for the local distribution function F~(q). 

Using the Chapman-Enskog method to solve Eq. (3) with the introduc- 
tion of the perturbation function by means of 

F~ = Fleq(1 + 4) (4) 

where r represents the linear nonuniformities in the macroscopic variable, 
and F~ eq the local equilibrium single distribution function, we obtain a 
unique solution in the form 

2 ~ In 0 au 
6 = ~r ) ~ ' - - ~ q  + d (~2 )  ~ ~  : ~  + ~ ( ~ )  ~ . u  (5) 

The notation used is explained in Ref. 6. The functions if, ~ ,  and 
satisfy certain integral equations (+) whose kernels contain the function F2. 
Having determined the functions ~, d,, and M, one can then obtain the 
transport coefficients. 

If we now make a density expansion of F2 

F2(...IF1) = ~ nZF2a)(...lF1 ) (6) 
/ = 0  
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where F2 (~ and F2 (~) were explicitly obtained in Ref. 5, one obtains density 
expansions for qb and the functions fY, ~r and ~ as follows: 

r = ~ hi+2@ '(~ (7) 
/ = 1  

fr = (1/n)fr + ~o + n.~ +... (8) 

~r = (1/n)~r + ~r + n,,d~ +...  (9) 

and 

= (1/n)Ma + ~o + nM1 +...  (10) 

The integral equations satisfied by the quantities labeled with B and 0 
were discussed in Ref. 6. We will now proceed to obtain the integral equations 
to second order in the density, i.e., for the quantities 4 ,  ~r and ~'l- 

Since in the general integral equations for ~ ,  ~, and ~ given in Ref. 8 
the quantities (/9/nK) and L appear, we expand them in power series in the 
density, with the result 

and 

t n-~= ~-~ - ~  , = 1 2 dO 3 ~ +...  (11) 

~ 2  

L (1 2 

with 

'7 ' 1 2 (13a). 

= - { - } &  + ~-~ + ~ o w '  - ~ o w  ~ - k o f i ~ '  - -~o~,~1"  

- ~ t~ e~ - -~Oa/9~'/3x "} (13b) 

In these equations ~r is the local equilibrium pressure, /91(0) and/92(0) 
are the second and third virial coefficients, respectively; the primes on fit 
denote derivatives with respect to 0. The rest of the symbols are defined in 
Ref. 8. 

Substituting Eqs. (7)-(13) into Eqs. (4.10) of Ref. 8, we find, to second 
order in the density, the following integral equations: 

2 k. ~ ,  d(Ofl2) ~ . [  ~@,2 3)X(p,) dx, 
X~') ~ rn f (I)'(1)('"x'lx)(q' -- q)~2-m-O 

= f r ~p' + f ~"%..p't• dp' 

+ f r176 dp' (14a) 
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- (1/0) f (b'(l~(-.. x'lx)X(P')S~ dx' 

= j" ,'(%..p'lz)x~')~'~ dp, 

+ f * 'm( . . .p ' lx)X(p ' )~ '~  dp' 

+ f qb"~176 dp' (14b) 

[1 - (@S/3mO)]fX(p) - (1/30) f O'(~(...x']x)X(p ') ~ ' . (q '  - q) dx' 

- -  f q;<~ dp' (14c) 
In order to evaluate the kernels of the integrals given above, we need the 

explicit expressions for F2 <z> (l = 0, 1, 2). For l = 0, 1 we have already 
calculated these expressions. ~5> Therefore we only need F2 (2>. This quantity 
will be obtained in the next section. 

3, THE  T W O - B O D Y  D I S T R I B U T I O N  F U N C T I O N  TO S E C O N D  
ORDER I N - T H E  DENSITY  

From the formal solution of the BBGKY hierarchy, given by Eq. (16) 
of Ref. 5, and using the boundary conditions introduced there and expressed 
by Eqs. (20a) and (20b) of Ref. 5, we find that to second order in the density 
the two-body distribution function is 

2 
F2(2~(xlx21F1) = g2(2~(ql' q 2)Sp2(xlx2) 1-~ Fl(xi) 

_ (o~ dr $2 - ~(x~x2)~bJ2)(xlx2 ]F~) ( I  5) 
Jo 

where 
r x2IF1) = - DaFt(z) - D2F2( o~ 

+ j dx8 (01~ + 028)F~(l~(x~, x a l F 1 )  x2 ,  (16) 

Using the expressions for the lower orders in the density of the distribu- 
tion functions obtained earlier, (5~ one finds after a lengthy calculation that the 
two-body distribution function to second order in the density has the follow- 
ing form: 

2 
F2(2'(xlx2IF1) = g2(~)(ql, q2)SP2(xl, x2) 1-~ FI(x,; t) 

j + clx~ M~(x~, x~, x~) ~ F~(x~; t) 
i = 1  

+ dxa dx~ N4(x~, x2, x3, x4) ~ Fl(x~; t) (17) 
i = l  
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Here the operators Ma(x~, x2, xa) and N~(x~, x2, xa, x~) are given by 

Ma(xl, x2, x3) 

fo = d~ S ~ ( x ~ ,  x~){g~)(q~, q~)~(x~, x~)[O~r~(q~, q~)~(x~, x~) 

+ 02ar2(q2, qa)S~2(x2, xa)] + P2(ql, q2)S~2(xl, x2) 

x [01ag2m(ql, q3)~(xl,  xa) + 02ag2(l>(q2, qa)SP2(x2, xa)] 

- (01a + 023)ga(1)(q~, q2, qa)S~a(xz, x2, xa)} (18) 

N~(x~, x~, x3, xO 

fo  [fo = dr oc(2~r~_,v.~, x~ dr S~(x~, x~){(O~a+O23)ra(ql , q2 , qa)~(x~, x2, xa) 

- r2(q~, q2)AP2(x~, x~)[0z3r~(q~, qa)SP2(xl, xa) 

+ 0~r~(q~, qa)S~2(x2, xa)]}[0~r2(q~, q4)SP2(xl, x~) 

+ o~r2(q~, q~)~(x~, x~) + Oa~p~(qa, q~)5~(xa, xO] 

+ r~(q~, q~)~(x~, x~) o~a dr S~(x~, xa){(O~ + Oa~)Pa(q~, qa, qO 

x ~(x l ,  x~, xO - r~(q~, q~)~(x~, x~)[o~r~(q~, qO~(x~, x~) 
l 

+ Oa~P~(qa, q~)~(x~, x~)]} + 0~3 [ dr S~(x~, xa) 
J 0 

x {(o~ + o~)r~(q~, qa, qOS~a(x~, xa, x~) - r~(q~, qa)S~(x~, xa) 

[o~r~(q~, q,)~(x~, x~) + o~p~(q~, qO~(x~, xO]} t • 

- (01a + 02a) dr S~(x~, xz, Xa){(0~ + 02~ + 0a~) 

x I'~(q~, q2, qa, q~)S~(xz, x~, xa, x~)[O~r~(q~, qOS~2(xz, x~) 

+ 0~r~(q2, q~)5~(x~, x~) + 03~r~(q~, q~)S~(xa, x~)]}[ (19) 
d 

4. T R A N S P O R T  C O E F F I C I E N T S  

In order to calculate the explicit form of the integral equations f~l, ~1, 
and N'I, we use the explicit expressions for F2 (z~ (l = 0, 1, 2) obtained in an 
earlier paper ~5~ and in the preceding section, in the integral equations given 
by Eqs. (14a)-(14c). We obtain the following results: 
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For ~ 

-~kx(,p)(#~/m)[d(O~2)/dO] - f dx2 012f g2m(qlq2)S'a2(xlxz)x(Pl)X(p2) 

f x ~ (q, - q)[(~2/2mO) - ~] + axa O a ( x l x 2 x 3 ) x ( P z ) X ( P ~ ) X ( P a )  
i=3.  

x ,=~ (q, - ~[ (~= /2mO)  - ~-] - f dx~ o~ ga'm(qzq~)S~(xzxz)x(p~)x(p~) 

2 

x ~ r + f dxa Ma(xzxzxa)x(P~)X(Pz)X(Pa) 
i=l 

t.=l 

X 1~1 ~/;~B(pi)l  - f dx20l2[g2(1)(qlq2)~a2(XlX2)X(Pz)X(p~) 

For 

f dx2 012{&(Z)(qz, q2)Se~(xl, x2)X(Pl)X(P2) 

f x ~ (S~ + dxa Oa(xz, x2, xa)X(P~)X(P2)X(P3) 
~=1 

x i~=z (S~ - f dx, O12[gg.(m(ql, q2)~q2(xl, xz)x(P,)X(P2) 

f x ~ (#~162 + dxa M3(x~x2x3)x(P~)X(P2)X(P3) 
i=:l. 

-O/e) 

8 

i=1 

i=3_ 
2 

i=$ 

~=1 

(~~ f dx20,2[g2("(q,,q2)Sez(x,x2)x(p,)x(p2) 

(~~ + f dxa Oa(x~x2xa)x(P~)X(p2)x(pa) 

(~o~)~4(p,)] = ~ ( ~ o ~ 4 )  (21) 
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For 9~ 

X(p)[1- (~2/3m0)]~ - (1/30) f dx2 0~2[ g2(~)(q~, q2)Sa2(x~, x2)X(P~)X(P2) 

x ~ ~ : (q i  - q) + dx3 (9~(xl, x2, x3)X(Pl)X(P2)X(P3) 
i = l  

• ~ :~.(q~ - q) %(~) (22) 
i = l  

Furthermore, the quantities ~fl and ~1 must satisfy the subsidiary 
conditions given by Eqs. (4.8) of Ref. 8. To second order in the density 
these are 

f • dp = 0 (23) 

f x(p)N'~(~ 2) dp = 0 (24) 

f dp' x (p'),.~l(p')(~'2/2m) 

_[ dp x(p')~o(p')f dp dx20(r)F2(~ x2, p'IF~ ~~ + 

[ dp[ dx2 dx' ~(r)F2(~ x2, x" IF~(~ ' - q)x(p') (25) 
! d 

There is no further condition on ~r162 Having solved the integral equa- 
tions (20)-(22) for ~ ,  ~r and ~z, one can write formal expressions for the 
transport coefficients to second order in the density. From Eqs. (5.8), (5.9), 
(5.14), and (5.16) of Ref. 8, we obtain the following results, to second order 
in the density. 

Heat conductivity 
(h)2 = (a~)2 + ( a ~ ) 2  + (h2~)9, + (a1~)2 + (a2'~)2 (26) 

with 

(1/6m20) f dp ~fYa(P)X(P) (27) (a% 

(A:Oz = (1/12mO) ~: dxz dp r . ( ~  + ~)[r @, 

• [F2(~)'(xxx2, p'lx)f~n(p') + F~(~ p'lx)fYo(p')]X(p') (28) 

( "  

(A:0~ (1/24m202) Jj dx2 dp r . ( ~  + ~2)[4,'(r)/r]r.) dx' ~,2(q, _ q)x(P') 

x F2(~ 'IX) (29) 
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{ .  l"  
(At+=)= = (1/6mO)J dp dx= ~(r)O~.J dp' 6 ~' 

x [F2(~ P'lx)~0(p') + F=(1)'(xlx=, P'lx)~C=(p')] (30) 

(1/12m202) ~j" dx2 dp ~b(r)p.f dx'Y2(q ' - q)x(P') (a=~)~ 

• F=C~ (31) 

Shear viscosity 
('/)z = (~=),) + (~7~)= + (~=*)= (32) 

with 

07'0= = (1/15m) i dp 5~'x(p)sa'~(~ =) (33) 

(~7 ~)2 = 1 f f f  dx~ dp dp'[r - � 8 9  '~] 

• X(p')F~<~)'(x~x~, p'lx)~e'~(p') + F~(~ p'lx)~o(p') (34) 

(~=% = (11200 ]f.i d~= dp ~' fr - q)~.P - (~=13)~'.(q' - q)j 

x X(p')F2(~ (35) 

Bulk viscosity 

(~)~ = (~)~ + (s + if+=)= 06)  

with 

(~'~)2 = - ( 1 / 3 m )  f dp ~2x(p)~z(~2 ) ( 3 7 )  

(~1)2 = ~ f f f  dx2 dp dp' rg/(r)F2(~ p'lx)~o(p')x(p') (38) 

(~:e~)~ = (1/180) fff ~x~ dp dx' r~'(r)~'.(q' - q)x(p')F2(~ (39) 

5. CONCLUSIONS 

In the last section we obtained the explicit general expressions for the 
heat conductivity and shear and bulk viscosities to second order in the 
density. From inspection of these expressions (and of the integral equations 
that the function ~1, ag,, and 6~z satisfy) we see that the integrals over 
configuration space appearing in these equations are finite. This is due to the 
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fact that  the factors I?~ and g~(~ act as convergence factors. I t  should be 
recalled that  these are precisely the factors introduced in the boundary  
condit ions that  reflect the physical situation in a dense medium. As a matter  
o f  fact, it is th rough  these factors that  the medium is introduced in the 
statistical dynamics of  a cluster o f  s particles. 

Therefore we can conclude that  insofar as the existence of  a convergent 
virial expansion of  the t ranspor t  coefficients is concerned, our  theory is 
consistent with experimental results. Of  course, we still have to compare  the 
numerical results obtained f rom this theory with experimental data. This 
implies the use o f  explicit intermolecular models. This will be the subject o f  
for thcoming communicat ions .  
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